Modular construction of extended DNA recognition surfaces: mutant DNA-binding domains of the 434 repressor as building blocks.

نویسندگان

  • T Liang
  • J Chen
  • M L Tjörnhammar
  • S Pongor
  • A Simoncsits
چکیده

Single-chain derivatives of the 434 repressor containing one wild-type and one mutant DNA-binding domain recognize the general operator ACAA-6 base pairs-NNNN, where the ACAA operator subsite is contacted by the wild-type and the NNNN tetramer by the mutant domain. The DNA-binding specificities of several single-chain mutants were studied in detail and the optimal subsites of the mutant domains were determined. The characterized mutant domains were used as building units to obtain homo- and heterodimeric single-chain derivatives. The DNA-binding properties of these domain-shuffled derivatives were tested with a series of designed operators of NNNN-6 base pairs-NNNN type. It was found that the binding specificities of the mutant domains were generally maintained in the new environments and the binding affinities for the optimal DNA ligands were high (with K(d) values in the range of 10(-11)-10(-10) M). Considering that only certain sequence motifs in place of the six base pair spacer can support optimal contacts between the mutant domains and their subsites, the single-chain 434 repressor mutants are highly specific for a limited subset of 14 base pair long DNA targets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single-chain repressors containing engineered DNA-binding domains of the phage 434 repressor recognize symmetric or asymmetric DNA operators.

Single-chain (sc) DNA-binding proteins containing covalently dimerized N-terminal domains of the bacteriophage 434 repressor cI have been constructed. The DNA-binding domains (amino acid residues 1 to 69) were connected in a head-to-tail arrangement with a part of the natural linker sequence that connects the N and C-terminal domains of the intact repressor. Compared to the isolated N-terminal ...

متن کامل

A permutational approach toward protein-DNA recognition.

The cI repressor of bacteriophage 434, known as 434 repressor, binds to 14-bp operator sequences by means of a helix-turn-helix motif. To probe the requirements for selective DNA recognition by this class of DNA binding proteins, as well as to generate new proteins with altered specificities, a library of approximately 3 x 10(6) mutants was generated that contains all permutations of five resid...

متن کامل

DNA recognition by proteins with the helix-turn-helix motif.

INTRODUCTION......... . ...... ................. .. ................. . .... . . ................. ......... 933 NOTIONS ABOUT RECOGNITION..... ................ . . .............. . . ..... . ......... . . ..... 934 THE HTH MOTIF... ..... ....... ................. .. . ................ .... . . .... ........... . .. . ..... .. 936 STRUCTURES.... . . . ..... .. ......... . . ................ ......

متن کامل

Combinatorial redesign of the DNA binding specificity of a prokaryotic helix-turn-helix repressor.

Redesign of the bacteriophage 434 Cro repressor was accomplished by using an in vivo genetic screening system to identify new variants that specifically bound previously unrecognized DNA sequences. Site-directed, combinatorial mutagenesis of the 434 Cro helix-turn-helix (HTH) motif generated libraries of new variants which were screened for binding to new target sequences. Multiple mutations of...

متن کامل

The bacteriophage 434 repressor dimer preferentially undergoes autoproteolysis by an intramolecular mechanism.

Inactivation of the lambdoid phage repressor protein is necessary to induce lytic growth of a lambdoid prophage. Activated RecA, the mediator of the host SOS response to DNA damage, causes inactivation of the repressor by stimulating the repressor's nascent autocleavage activity. The repressor of bacteriophage lambda and its homolog, LexA, preferentially undergo RecA-stimulated autocleavage as ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Protein engineering

دوره 14 8  شماره 

صفحات  -

تاریخ انتشار 2001